On August 14, 2003, a cascading failure of the power grid plunged more than 50 million people into darkness in the northeast US and Canada. It was the most significant power outage ever in North America, with an economic impact north of ten billion dollars. Calamities like this don’t happen in a bubble, and there were many human factors, political aspects, and organizational issues that contributed to the blackout. But, this is an engineering channel, and a bilateral task force of energy experts from the US and Canada produced this in-depth 240-page report on all of the technical causes of the event that I’ll try to summarize here. Even though this is kind of an older story, and many of the tough lessons have already been learned, it’s still a nice case study to explore a few of the more complicated and nuanced aspects of operating the electric grid, essentially one of the world’s largest machines.
Nearly every aspect of modern society depends on a reliable supply of electricity, and maintaining this reliability is an enormous technical challenge. I have a whole series of videos on the basics of the power grid if you want to keep learning after this, but I’ll summarize a few things here. And just a note before we get too much further, when I say “the grid” in this video, I’m really talking about the Eastern Interconnection that serves the eastern two-thirds of the continental US plus most of eastern Canada.
There are two big considerations to keep in mind concerning the management of the power grid. One: supply and demand must be kept in balance in real-time. Storage of bulk electricity is nearly non-existent, so generation has to be ramped up or down to follow the changes in electricity demands. Two: In general, you can’t control the flow of electric current on the grid. It flows freely along all available paths, depending on relatively simple physical laws. When a power provider agrees to send electricity to a power buyer, it simply increases the amount of generation while the buyer decreases their own production or increases their usage. This changes the flow of power along all the transmission lines that connect the two. Each change in generation and demand has effects on the entire system, some of which can be unanticipated.